
LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

AWS Proof of Concept Project Report
Hsin-Fang Chiang, Dino Bektesevic,

2019-12-09

1 Background

In April 2019, LSST DMbegan a proof of concept project with the AmazonWeb Services (AWS1)
and HTCondor2 teams to explore whether a cloud deployment of the Data Release Produc-
tion (DRP) is feasible. The execution plan is in DMTN-114. For this project AWS granted us
credits to use their platform. The team met biweekly to discuss the progress and plans. In
this document we report the results and lessons learned.

2 Approaches and strategies

In executing this PoCwe focused on the goal of being able to demonstrate the data processing
on the AWS cloud and kept the following strategies in mind.

1. Progress in phases. Following the ideas in DMTN-114 we started with simply moving
the execution to an AWS Elastic Compute Cloud (EC2)instance without modifying any
backend, and gradually switching each component to use AWS products. Amazon’s Net-
work File System, Amazon Elastic File System (EFS), was used in the first phase as the
storage of a shared data repository, before the S3 datastore could be used directly via
the Data Butler interface. A sqlite file on Amazon EFS was the Data Butler Registry be-
fore we moved it to an Amazon Relational Database Service (RDS) instance. A Personal
Condor Pool on one instance was used before we tested the capability to launch new
instances as the Condor workers. This approach allowed us to debug and adapt more
smoothly and always had a fallback option in integrating and testing new features and
components.

2. Test minimally before scaling up. If possible, small tasks are tested before workflows
of jobs, and small workflows are tested before large workflows. In particular, the ci_hsc

1https://aws.amazon.com/
2https://research.cs.wisc.edu/htcondor/

1

https://github.com/lsst/ci_hsc
https://aws.amazon.com/
https://research.cs.wisc.edu/htcondor/

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

dataset and the accompanying CI workflow provide a minimal HSC test dataset and a
representative DRP workflow and algorithms. This test workflow is an important step in
integrating new changes.

3. Use Gen3 middleware. One of the mandates in the PoC was to use the Gen3 Middle-
ware (?), which is designed to ease the DRP execution and automation compared to the
previous Gen2 Middleware. However, as the Gen3 Middleware has been under active
development during the course of the PoC, there were many backwards incompatible
changes, the API and registry schema were unstable, no Gen3 continuous integration
tests existed when we first started, and the test coverage was not good. We did not
always follow the bleeding edge version and updated only when unnecessary, such as
important bug fixes. Nonetheless the stack versions should not have strong impacts in
the PoC conclusions.

4. Focus on end-to-end execution and leave optimization behind. Some potential op-
timizations and further investigations were identified throughout the PoC project but
were not carried out. Some ideas are discussed in Sec 6.

3 Architecture Design

The system design in the end of the PoC is as in the diagram in Figure 3. All components are
hosted on the AWS platform.

The user launches an on-demand instance as themaster submit host and the centralmanager
of theHTCondor. HTCondormanages anHTCondor poolwhich is a collection of resources. On
the master, the command line interface of Pegasus is used to submit, control, and monitor
the LSST workflow. Each LSST Pipeline Task Quantum is mapped into a Pegasus job in the
abstract workflow which is resource-independent. The job dependency is represented as a
directed acyclic graph (DAG). Pegasus adds other necessary jobs, such as data transfer, to the
executable workflow. HTCondor DAGMan is the workflow execution engine behind Pegasus
and controls the processes. HTCondor matches jobs with available and suitable resources.

Using HTCondor Annex, AWS EC2 instances are launched as workers to join the HTCondor
Pool. Either the on-demand or the Spot instances can be added. Fleets of multiple Spot in-
stances can be requested using HTCondor Annex commands. HTCondor Annex manages the
instance lifecycle.

2

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

Figure 1: architecture design

LSST Pipeline jobs are executed on the worker instances. Science files are stored in a S3
bucket which is a Data Butler Datastore, and pipelines jobs read and write directly to the S3
bucket via Data Butler. Pipeline jobs also connect directly to the RDS instance which is the
Data Butler Registry that keeps track of all science files. These new Data Butler backends
were implemented during the PoC, see Sect ??.

Files that are not managed by Data Butler are managed by the Condor File IO via Pegasus.
These include the Data Butler configuration file, pipeline definition (Quantum Graph) files,
and the log files. The master instance also serves as the staging site for these files. Condor
File IO transfers input and output files between the master and the workers; instances do not
share a filesystem.

3.1 Alternative architecture designs

We discussed different architecture designs but did not pursue all of them due to time con-
straints. One prominent idea is to use condor transfer to read and write files to S3, rather
than relying on Data Butler to communicate directly with S3. A new plug-in to do so has been
recently added in HTCondor. In this design HTCondor controls all file transfer.

Similarly, database ingestion may be done only after the jobs fully finish, rather than one

3

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

at a time while the jobs run. The number of database connections may also be reduced by
bundling transactions frommultiple jobs together. The idea here is to handle database trans-
actions in a centralized manner, not on workers, and throttle the database connections more
easily. This design may require a local sqlite registry to be used in each job. Job wrappers and
new Data Butler features may be needed.

4 Building AWS support into the Data Butler

The Data Butler is the overarching data IO abstraction through which all LSST data access
is mediated. Datasets are referred to by their unique IDs, or a set of identifying references,
which are then resolved through a registry that matches the dataset IDs, or references, to the
location, file format and the Python object type of the dataset. The system that persists, reads
and potentially modifies the datasets is called the datastore. The Registry is almost always
backed by an SQL database and the Datastore is usually backed by a shared filesystem. A
major focus of AWS POC was to implement, and investigate issues related to, an S3 backed
Datastore and a PostgreSQL backed Registry.

Simple Storage Service (S3) is object storage provided by AWS. Unlike the more traditional file
systems that manage data as a file hierarchy, or data blocks within sectors and tracts, objet
storage manages data as objects. This allows the storage of massive amounts of unstruc-
tured data where each object typically includes the data, related metadata and is identified
by a globally unique identifier. S3, specifically, promises 99.999999999% durability as upload-
ing an object to it automatically stores it acrossmultiple systems, thus also ensuring scalability
and performance. Related objects are generally stored in the same Buckets for easier admin-
istrative purposes. Access, read, write, delete and other atomical units of action on the objects
themselves can be allowed or forbidden at the account, bucket or individual object level. Log-
ging is available for all actions on the Bucket level and/or at the individual object granularity.
It is also possible to define and issue complex alert conditions on Bucket or object actions
which can execute arbitrary actions or workflows.

PostgreSQL is one of the most popular open source relational database systems available.
The choice to go with PostgreSQL was based on the fact that it’s a very popular and well sup-
ported open source software that suffers from no additional licensing fees usually associated
with proprietary software. Relational Database Service (RDS) is the AWS cloud service that
launches and configures databases with ease.

4

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

At the time the PoC project began, the Gen 3 Data Butler implemented PosixDatastore, a lo-
cal or shared filesystem datastore, and a SqliteRegistry. OracleRegistry followed soon after
the PoC project began. Initially the focus was on implementing an S3 backed datastore called
S3Datastore. The interface between AWS services and LSST Stack would be based on the offi-
cial AWS SDK called boto3. In March 2019, Dino Bektesevic visited NOAO to workmore closely
with Tim Jenness, which prooved to be instrumental in implementing the early versions of a
newmodule in the ‘daf_butler‘ called ‘s3utils‘, an ‘S3Datastore‘ class, the PosixDatastore equiv-
alent, and a set of appropriate unit tests that demonstrated its functionality and correctness.
The unit tests for the datastore utilize the ‘moto‘ library which mocks requests and responses
sent to AWS services, so that no additional external infrastructure is required to use it. Post-
greSqlRegistry class was implemented partially during the visit and completed shortly after
the visit. The initial implementation showcasing the required changes to the code was sub-
mitted as a Draft Pull Request PR-147.

The tentative implementation revealed issues with how the Data Butler treated Uniform Re-
source Identifiers, or URIs, which were, at the time, not being handled correctly, as per stan-
dards defined in FC-3986, by The Location class. After expansive discussions and an example
re-implementation called S3Location to demonstrate the issues, in May 2019 Tim Jenness au-
thored the ‘ButlerURI‘ class (PR-167) resolving the issues. Major efforts were then invested
into refining the newly added code to the level of production quality as well as updating the
remaining Gen. 3 Butler to use the updated ButlerURI code instead. Every call to OS function-
ality had to be generalized to take a URI and from it determine the appropriate operation - a
call to OS functionality, a AWS operation or something else. This led changes in Butler, Config,
ButlerConfig and YAML Loader classes. These changes made the whole of Data Butler more
general and pliable to future changes, such as adding support for other cloud providers.

Further integration of the S3 backend required a change to Formatter classes to enable data
serialization and deserialization to and from bytes. Formatters present interfaces for read-
ing and writing of Python objects to and from files. They are the mechanism underlying how
Data Butler is capable of presenting data as science products in the form of Python objects,
abstracting away the underlying file types. Modifications were made to JsonFormatter, Pick-
eFormatter, YamlFormatter, PexConfigFormatter and the generic abstract class Formatter.
This concluded the last of changes required for S3Datastore integration. After which Jenkins
integration tests were run and the S3Datastore and supplemental code was merged to mas-
ter branch of the ‘daf_butler‘ repository in PR-179 (the associated Jira ticket is DM-13361). It
became apparent that there are certain similarities that are shared between PosixDatastore

5

https://github.com/lsst/daf_butler/pull/147
https://tools.ietf.org/html/rfc3986
https://github.com/lsst/daf_butler/pull/167
https://github.com/lsst/daf_butler/pull/179
https://jira.lsstcorp.org/browse/DM-13361

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

and S3Datastore, similarities that would be shared by other future datastore implentations.
To reduce code duplication the general datastore code was refactored and reorganized in
PR-187 shortly after.

PostgreSqlRegistry was not part of this PR. The initial implementation was based on Ora-
cleRegistry, due to the similarities between the two, but was re-implemented in terms of the
generic SqlRegistry class in July. Problems were caused, for both Oracle and PostgreSQL, by
the table naming conventions and additionally, for PostgreSQL, the table views did not con-
form to the assumptions made. In July the PostgreSqlRegistry was re-implemented in terms
of the more general SqlRegistry and a new SQLAlchemy expressions compiler was written, so
that table views could be generated correctly. The policy for additional registry implemen-
tations was not to accept associated unit tests, as they are dependent on existing outside
architecture, meant that checking wheter it worked or not had to be based on manually exe-
cuting one of the continuous integration tests such as ci_hsc. I migrated existing SQLite reg-
istries to PostgreSQL in July and August and made them available to the LSST AWS PoC group
for testing. The code was merged into the master branch of Gen. 3 Butler in August with
PR-161. A major issue was then discovered when issuing rollback statements during error
recovery stemming from assumptions made when implementing how all of the current SQL
registries handle errors during transactions. A stopgap solution, that works for all currently
implemented registries, was implemented in PR-190 and a more complete solution was then
implemented by Andy Salnikov in PR-196.

Outstanding issues are presented in terms of security and authorization when dealing with
both S3Datastore and PostgreSqlRegisty, with PostgreSqlRegisty being especially sensitive to
these issues. Security has received the outmost attention by the LSST AWS PoC group. Signif-
icant attention was paid to preserving the flexibility of the authentication in order to be able
to incorporate external authenticators such as Oracle Wallets and AWS IAM Roles and Poli-
cies. There were several different iterations and improvements made to the authentication
implementation (PR-189, PR-180 and PR-191) that resulted with the current implementation.
An older Gen. 2 Butler module, ‘db_auth‘, was re-implemented in Python by Kian-Tat Lim and
added toGen. 3 Butler so that themodulewould support basic file based authentication in ab-
sence of external authentication methods. Additional layers of security are achieved through
EC2/S3/RDS interfaces by IP white/blacklisting , IAM, Policies etc. These policies can be very
granular, affecting individually selected objects, Bucket-wide to placing all instances on the
same, externally innaccessible, Virtual Private Network (VPN).

6

https://github.com/lsst/daf_butler/pull/187
https://github.com/lsst/daf_butler/pull/161
https://github.com/lsst/daf_butler/pull/190
https://github.com/lsst/daf_butler/pull/196
https://github.com/lsst/daf_butler/pull/189
https://github.com/lsst/daf_butler/pull/180
https://github.com/lsst/daf_butler/pull/191

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

Adding the support for AWS into the Butler exercised almost the entirety of the Gen. 3 Data
Butler. During the process many faults and unpredictable behaviors were discovered and
solved. Many problems touched, and continue to exercise, the general Gen. 3 Data But-
ler implementation, as well as assumptions made during their implementation. Recounting
the wide list of major improvements to the codebase, hopefully, reveals how productive this
exercise has been in helping generalizing and strengthening the whole Gen3. Data Butler
codebase.

5 Results of the tract-sized runs

After successful execution with the ci_hsc dataset, we scaled up the run to one full tract of
the HSC-RC2 dataset (DM-11345). The full HSC-RC2 input repository contains 108108 objects
and totals ∼1.5TB, including 432 raw visits in 3 tracts and ∼0.7TB of calibration data. In this
project, we targeted tract=9615 which was executed with the Oracle backend on the NCSA
cluster in July 2019 as the S2019 milestone of the Gen3 team; see DM-19915. In terms of raw
inputs, tract=9615 contribute around 26%, or ∼0.2 TB, of the raw data in the HSC-RC2 dataset.
We ignored patch 28 and 72 due to a coaddition pipeline issue as reported in DM-20695. A
Butler repo was first made on NCSA’s GPFS with a sqlite registry, and then transferred to the
S3 bucket and the RDS instance. All tract-sized runs reported in this DMTNused LSST Software
Stack release w_2019_38. The version of HTCondor was 8.9.3.

The workflow contains 1 initialization job and 27074 regular PipelineTask jobs. Science config-
urations from https://github.com/lsst-dm/gen3-hsc-rc2 were used to generate a Quantum
Graph. We transformed theQuanta into jobs in the Pegasus format with one-to-onemapping.
The breakdown of the tasks in the workflow is in Table 1.

Generally speaking, there are two types of jobs: small-memory and large-memory jobs. Small
memory jobs take less than 4GB per jobs, and large memory jobs can take up to ∼30GB per
jobs. For simplicity, we consider all jobs of MakeWarpTask, CompareWarpAssembleCoad-
dTask, DeblendCoaddSourcesSingleTask, and MeasureMergedCoaddSourcesTask as large-
memory jobs and require∼30GBofmemory in their job specifications. HTCondor onlymatches
jobs tomachines with sufficientmemory. AWS instances comewith different flavors and the r
family providesmemory optimized instances with∼8GB per core, favorable for large-memory
jobs. The worker instances are configured to be HTCondor partitionable slots which dynami-
cally splits resources and creates new slots to suit the jobs.

7

https://jira.lsstcorp.org/browse/DM-11345
https://jira.lsstcorp.org/browse/DM-19915
https://jira.lsstcorp.org/browse/DM-20695
https://github.com/lsst-dm/gen3-hsc-rc2

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

Task Count
Initialization 1

IsrTasks 6787
CharacterizeImageTasks 6787

CalibrateTasks 6787
MakeWarpTasks 4580

CompareWarpAssembleCoaddTasks 395
DetectCoaddSourcesTasks 395

MergeDetectionsTasks 79
DeblendCoaddSourcesSingleTasks 395

MeasureMergedCoaddSourcesTasks 395
MergeMeasurementsTasks 79

ForcedPhotCoaddTasks 395
Total 27075

Table 1: Task breakdown of the HSC-RC2 tract=9615 workflow

Run ID Workflow Cumulative job Pipetask Pipetask Pipetask Pipetask
wall time wall time Min (sec) Max (sec) Mean (sec) Total (sec)

20191026T041828 28.4 hrs 61 days, 10 hrs 17.025 5936.038 195.465 5292217.997
20191121T015100 11.7 hrs 65 days, 8 hrs 18.272 5852.514 207.691 5623244.556
20191127T192022 8.7 hrs 62 days, 16 hrs 17.861 6243.819 199.636 5405141.464
20191127T192345 10.0 hrs 62 days, 23 hrs 19.297 6300.657 200.601 5431273.315

Table 2: Run summary

The submit host is an AWS on-demand instance, typically m5.large or larger. Spot fleets are
requested after the Pegasus workflow start. Typically m4 or m5 instances are used for the single
frame processing or other small-memory jobs, and r4 instances are used for large-memory
jobs. After the workflow finishes, remaining running Spot instances may be terminated on
the AWS console. Besides the 27075 pipetask invocations, Pegasus added 2712 data transfer
jobs and one directory creation job. The total output size from the tract=9615 workflow is
∼4.1 TB with 74360 objects.

5.1 Notes from the successful runs

Details of all runs are summarized in DM-21817, and in the following we summarize the suc-
cessful runs only. Table 2 lists the runtime as reported by Pegasus tools.

In the first successful run 20191026T041828+0000, a fleet of 40 m5.xlarge instances were used
for single frameprocessing and then a fleet 50 r4.2xlargememory optimized instances for the

8

https://jira.lsstcorp.org/browse/DM-21817

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

rest. A m5.large on-demand instance served as the master. The single frame processing part
finished in 4 hours; coadd and beyond took 16 hours. In this run, the memory requirement
of the large-memory jobs was slightly higher than half of a r4.2xlarge, resulting in instance
resources not fully used. This run spanned two billing days.

In the repeated run 20191121T015100+0000, the master was also a m5.large on-demand In-
stance. Fleets containing 75 m4.xlarge instances and 50 r4.2xlargewere launched. Themem-
ory requirement of the large-memory jobs was adjusted so that two such jobs can run on a
r4.2xlarge simultaneously. Due to the larger fleet, the whole workflow finished within 12
hours in one bill day.

We then ran twoof the sameworkflowgraphs 20191127T192022+0000 and 20191127T192345+0000

simultaneously, simulating a larger input size. The master was a m5.2xlarge on-demand in-
stance. A Spot fleet containing 150 m5.xlarge instances ran the single frame processing for
the first three hours, and a fleet of 150 r4.2xlarge instances ran the rest of the workflow.
600 jobs ran simultaneously during single frame processing. Larger fleets were used to help
finishing the workflows in a shorter wallclock time. This run spanned two billing days.

5.2 Cost Analysis

The main components of the charges come from (a) EC2 Spot instances, (b) EC2 on-demand
instances, (c) S3 storage, (d) RDS, and (e) others. The numbers reported here are from the
AWS Cost Explorer tools.

1. EC2 Spot instances. EC2 Spot instances are the workers that execute the processing
jobs, so this essentially is the cost of the compute power and scales with the compute
resources needed to accomplish the processing campaign. The exact pricing for Spot
instances varies based on supply and demand of the overall EC2 capacity. For instances
used in our test runs, Spot instances cost around 20-25% of the on-demand instance
price. Charges continue as long as the instances are up and running, even if no jobs are
assigned to the instances. One hour of Spot instance typically costs $0.045 for m5.xlarge
and $0.08 for r4.2xlarge. Different mix of instance types could affect the performance
aswell as the total cost. Including the instance idle time, we paid∼ $0.035 per computing
hour in average. We could pay less with better workload control and instance lifecycle
control.

9

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

2. On-demand EC2 instance. We use an on-demand EC2 instance to serve as the submit
host and the central workflow manager because we do not want it terminated by AWS.
The current price of m5.xlarge on-demand instances is $0.192 per hour.

3. RDS. Throughout our test runs we used a db.m5.xlarge instance, which has 4 vCPU
and 16 GB of memory, to host the Butler Registry of the HSC-RC2 repository. We are
aware this DB instance is more powerful than we usually need but we keep it running.
The charge is therefore proportional to the span of time. For simplicity we count all
RDS charge during the runs towards the cost of the runs, which is an overestimate be-
cause we also host other small database instances for testing purposes. For example,
a db.t2.micro has been running alongside to host a Butler Registry for the ci_hsc repo
which costs $1.3 per day.

4. S3. The charge of S3 is dominated by the data storage cost, which is $0.023 per GB
per month for the first 50TB. This means it costs ∼$1.2 per day storing the input repo
(∼1.5TB) alone, and ∼$3.1 per day storing one set of the tract=9615 workflow outputs
(∼4.1TB). Note that outbound data transfer is not free at AWS. At the rate of $0.09 per
GB, transferring one tract=9615 output dataset out of AWS would cost ∼$370. We also
incur charges per quantity of requests, which cost∼$4.3 for each run of the tract=9615
workflow.

5. Other charges. The majority of other charges come from the Elastic Block Store (EBS)
that provides storage for use with EC2. This includes SSD-backed volumes and snap-
shots, both of which are priced per size and time. Other charges are relatively small,
such as a Business Support plan to get help from AWS engineers, and CloudWatch for
additional monitoring information. In our accounting here this also includes charges
from instances used in work indepedent of the workflow execution, so this should also
be seen as a upper bound.

Table 3 provides an overview of the cost breakdown for each run. This includes all charges
incurred on the billing days during which the runs were done, so this can be seen as an upper
bound. We also have not optimized the usage; more discussions are in Sect 6.

5.3 Cost projection

The raw input exposures in the HSC-RC2 tract=9615workflow contains∼0.2TB from 112 visits.
Compared to one night of LSST data in full operations, this is only∼11% in the number of visits.

10

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

Runs

Category 20191026T041828 20191121T015100 20191127T192022
20191127T192345

EC2 on-demand instances for master 2.88 1.54 2.05
EC2 Spot instances 94.69 58.55 52.94

RDS 26.38 13.82 13.82
S3 (including other storage cost) 17.29 13.48 21.48

Others/mostly EC2 18.38 7.12 6.37
Total 159.62 94.51 96.66

Table 3: Cost breakdown for each run

Figure 2: Cost breakdown for each run

In one of our tests, we doubled the input size to explore how it scales up. It scales roughly
linearly in cost and total compute resources. In processing wallclock time, it does not take
longer because more EC2 instances can be deployed. For one tract of DRP test workflow the
cost was around $95. If such scaling relationship holds for larger amount of data, 1000 visits
will cost around $850 to process.

6 Potential Improvements and more lessons learned

In this session we describe issues we have encountered during the execution and ideas to
improve. We discuss both intermittent failures that we understand and expect to occasionally

11

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

encounter even in production, as well as higher level design or tooling improvements.

Failures can occur due to non-pipeline issues such as underlying infrastructure. The fault rate
may be small but as we scale upwe start to encounter some. Some examples are listed below;
most seem transient.

1. Database connection timeout. Attempting to connect to the RDS instance failed.

sqlalchemy . exc . OperationalError : (psycopg2 . OperationalError) could
not connect to server : Connection timed out

2. After a file was added to a S3 bucket and during ingestion in the Butler registry, S3 re-
ported a file does not exist. This will be fixed in DM-22201.

FileNotFoundError : F i l e at ’ s3 : / / hsc−rc2−test1−hfc / repo−w38/ hfc30 /
srcMatchFul l /1316/ srcMatchFull_1316_24_HSC_17 . f i t s ’ does not
ex i s t ; note that paths to ingest are assumed to be re l a t i v e to
se l f . root unless they are absolute .

3. S3 read timeout before science processing started in a job.

botocore . exceptions . ReadTimeoutError : Read timeout on endpoint URL :
”None”

4. Out-of-memory while running jobs. For the same pipeline and input data, this is repro-
ducible. But we may not always have accurate memory usage prediction for any input
data before running the jobs. We can configure HTCondor to increase the memory re-
quirement in the retry. However sometimes OOM crashed the instances and appeared
as a network issue, an undesirable behaviour.

5. Launching HTCondor Annex workers failed with connectivity check collector issues.

Connect iv i ty check found wrong co l l e c to r (f5fc15573ffb9c93 vs
a006066e73c412da) .

6. Dataset ConflictingDefinitionError. In rare occassions we observed dataset conflict er-
rors from the registry without obvious reasons such as duplicate collection names or
retries. DM-21201 has refactored the code to robustify such transactions. It could also
be related to Spot instances getting terminated; see next section on failure recovery.

12

https://jira.lsstcorp.org/browse/DM-22201
https://jira.lsstcorp.org/browse/DM-21201

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

More generally, improvements in system design and tooling rise to prominence. We discuss
some ideas below.

1. Better job failure recovery strategies. Our jobs write directly to the S3 bucket and the
RDS instance via the Data Butler. If a job fails in a state that partial outputs are written
but the job does not fully finish, recovery is not trivial. We may want a wrapper around
the Pipeline Task that commits a transaction only if the job succeeds, have a reliable way
to overwrite files from a failed job, or other ways to handle such scenarios.

2. Container based software stack. We have found it tricky to handle the LSST stack instal-
lation, dependencies, and environments to be used together with other software. One
possible way to avoid the headaches is to use docker based stack releases. This may
also ensure consistency of software on the master and the workers more easily.

3. Better cluster management tooling. Our current operational approach requires manu-
ally deploy suitable types and sizes of fleets based on our understanding of the overall
workload. Strategies on the instance choices and timing of requests therefore affect the
cost, andmanual adjustments are usually needed to reduce cost. Annex can remove idle
instances out of the condor pool but may not terminate the instances until the lease ex-
pires. Also once instances drop out of the pool they can’t be added back easily. Tooling
become essential for the operations. For example we may use scripts to auto-scale the
Annex condor pool. An alternative approach is to use AWS Batch which automatically
provisions the compute resources based on the workload and only charges for the ac-
tual resources used.

4. End-to-end CI. This should include all operational components to do an end-to-end run.
This includes Butler repo generation, registry generation, Quantum Graph generation,
job composition, workflow translation, job execution, and so on. Many of the compo-
nents were in the development phase and workarounds were used during the PoC. For
example a native Gen3 ingestion was not available so a Gen2-to-Gen3 conversion was
needed. As we put together the pieces, the absence of to do so in an automatic fashion
became a key burden. In retrospect we probably should have invested more time to
automate the end-to-end workflow, even with workarounds. Looking ahead a first step
could be a ci_hsc like package with the S3 backend.

5. Credential handling. In the execution reported here, the worker image carry credentials
in files /.lsst/db-auth.yaml and /.aws/credentials which is not the best practice of
handling the access.

13

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-09

6. Robustify and give better error messages. It has been observed that sometimes the
error messages could be misleading.

7 Summary

In this PoC project we have demonstrated the feasibility of LSST DRP data processing on the
cloud. We implemented AWS backends in the LSST Gen 3 middleware, allowing processing
entirely on the AWS platform using AWS S3 object store, Postgres database, and HTCondor
software. We analyzed cost usage in our test execution, and estimated cost for larger process-
ing campaigns. We also showcased our progress in a live demonstration in the LSST Project
Community Workshop, as well as a hands-on tutorial in the Petabytes to Science Workshop.
Ideas of improvements necessary for larger-scale production are identified and discussed.

A References

References

[DMTN-114], Lim, K.T., Guy, L., Chiang, H.F., 2019, LSST + AmazonWeb Services Proof of Concept,
DMTN-114, URL http://dmtn-114.lsst.io

B Acronyms

14

http://dmtn-114.lsst.io

	Background
	Approaches and strategies
	Architecture Design
	Alternative architecture designs

	Building AWS support into the Data Butler
	Results of the tract-sized runs
	Notes from the successful runs
	Cost Analysis
	Cost projection

	Potential Improvements and more lessons learned
	Summary
	References
	Acronyms

