
LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

AWS Proof of Concept Project Report
Hsin-Fang Chiang, Dino Bektesevic,

2019-12-12

1 Background

In April 2019, LSST DM began a proof of concept (PoC) project with the Amazon Web Services
(AWS) and HTCondor teams to explore whether a cloud deployment of the Data Release Pro-
duction (DRP) is feasible. The execution plan is in DMTN-114. For this project AWS granted
us credits to use their platform. The team met biweekly to discuss the progress and plans.
In this document we report on the work carried out, lessons learned, as well as the results of
scaling and pricing tests.

2 Technology stack

2.1 Amazon Elastic Compute Cloud (EC2)

Amazon Elastic Compute Cloud (EC2) service provides secure, resizable compute capacity in
the cloud based on virtualization technologies. The unit of compute resources is an instance,
and users can scale up and down the number of instances. EC2 instances come with mul-
tiple instance types for a configuration of memory, CPU, and storage. An Amazon Machine
Image (AMI) bundles the Operating System (OS) with required data and configurations into
a convenient image that can be launched on any EC2 instance type. Amazon Elastic File Sys-
tem (Amazon EFS) provides a POSIX-compliant, scalable, elastic NFS file system designed to
provide parallel shared access to thousands of AWS compute instances. We have used On-
demand and Spot instances in the AWS PoC. On demand instances costmore but they can not
be deallocated by AWS. Spot instances are significantly cheaper, but at any time AWS, given a
2 mintue warning, can request the compute resources back and deallocate them.

2.2 Amazon Simple Storage Service (S3)

Simple Storage Service (S3) is an object storage that allows massive amounts of unstructured
data where each object typically includes the data, related metadata and is identified by a

1

https://aws.amazon.com/ec2/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/s3/

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

globally unique identifier, to be stored and accessed from EC2 instances or elsewhere in a
durable and highly scalable way. Buckets, organizational units in which related objects are
generally stored, enable easier access and priviledges administration. Access, read, write,
delete and other atomical units of action on the objects themselves can be allowed or forbid-
den at the account, bucket or individual object level. Logging is available for all actions on the
Bucket level and/or at the individual object granularity. It is also possible to define and issue
complex alert conditions on Bucket or object actions which can execute arbitrary actions or
workflows, but S3 itself is not POSIX compliant.

2.3 PostgreSQL

PostgreSQL is one of the most popular open source relational database systems available.
The choice to go with PostgreSQL was based on the fact that it’s a very popular and well sup-
ported open source software that suffers from no additional licensing fees usually associated
with proprietary software. Relational Database Service (RDS) is the AWS cloud service that
launches and configures databases with ease. The RDS databases can be backed up into
snapshots as well as exported to downloadable files on S3.

2.4 HTCondor

HTCondor(Thain et al., 2005) provides distributed job parallelization and is a powerful batch
system for high throughput computing (HTC). A HTCondor pool is a collection of compute
resources, and HTCondor matches job requests with available resources following their job
requirements. The condor_annex module allows HTCondor deployment on cloud resources.
Instances allocated by condor_annex are added to a shared resource pool on which jobs added
in the job queue are scheduled on. Unused compute resources are automatically deallocated
after some set time spent idling. HTCondor has been succesfully used by HEP Cloud project,
scaling up to 60,000 cores in multi-region deployement on AWS, and by IceCube experiment,
where they scaled up to 51,000 GPUs across multiple regions and multiple cloud providers
(AWS, Azure, and Google Cloud).

2.5 Pegasus

Pegasus(Deelman et al., 2015) is a workflow management system built on top of HTCondor.
Popular in large-scale scientific computing, it provides command line and API interfaces for

2

https://aws.amazon.com/rds/
https://research.cs.wisc.edu/htcondor
https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature
https://www.linkedin.com/pulse/using-50k-gpus-across-multiple-clouds-icecube-science-igor-sfiligoi
https://pegasus.isi.edu/

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

scientists to write abstract workflow independent of the underlying computing infrastructure.
Pegasus workflows are expressed as Directed Acyclic Graphs (DAGs) where jobs are the nodes
and job dependencies are represented by the edges. Pegasus utilizes HTCondor DAGMan as
its execution engine, but also supports various execution environments and data manage-
ment strategies.

2.6 LSST Software Stack

The LSST Science Pipelines Software Stack is a collection of data processing codes for optical
and near-infrared astronomy, and is used for DRP (Bosch et al., 2018). Besides image pro-
cessing and astronomical catalog analysis, it includes a middleware layer for data access, task
definition and execution. The LSST Data Butler is a framework that abstracts the underlying
data persistence and implementations from Science Pipelines algorithms, and a data reposi-
tory is a set of datasets under control of the Data Butler (Jenness et al., 2018). The Data Butler
concepts can be found in LDM-463. Recently, the middleware layer is ungergoing a major
refactoring, with the new middleware known as the Generation 3 Middleware (”Gen3” Mid-
dleware; DMTN-056). This AWS PoC added new features in the Generation 3 Data Butler; see
Sect 5.

3 Architecture design

The system at the end of the PoC is shown in Figure 3. All components are hosted on the AWS
platform.

AMIs containing LSST Software Stack, Pegasus, and configured HTCondor are pre-built in two
flavors: master and worker. These contain the complete environment required to run DRP
workflows and scale them out with HTCondor. The user launches an on-demand EC2 instance
using the master AMI to be the submit host and the central manager of HTCondor pool. The
user logs in to this master to control the workflow execution.

The workflow of the LSST DRP in Generation 3Middleware is represented as a Directed Acyclic
Graph (DAG) known as Quantum Graph. In the Generation 3 Middleware, input and output
datasets are defined in the Pipeline Tasks and each unit is known as a Quantum. The Quan-
tum Graph is aware of the Quantum dependency and determines the execution workflow.
For simplicity we map each Quantum to a standalone job, despite this may not be optimal for

3

https://pipelines.lsst.io/

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

Figure 1: Diagram of the AWS PoC system architecture.

the performance. Pegasus is used to submit the workflow to HTCondor as well as monitor
the workflow execution. Each LSST Pipeline Task Quantum is resource-independent. Pega-
sus adds other necessary jobs, such as data transfer, to the executable workflow. HTCondor
DAGMan is the workflow execution engine behind Pegasus and controls the processes.

Compute resources are procured from the master node via condor_annex by targeting the
worker AMI. Annex is a resource acquisition and external compute resource separation man-
agement unit. Each resource pool can have multiple annexes. Each annex manages its own
lifecycle. It is possible to request on-demand or spot instance fleets.

LSST Pipeline jobs are executed on the worker instances; they use Data Butler for data access.
New Data Butler backends were implemented during the PoC, see Sect 5.

The Butler datastore is located in an S3 Bucket and follows the same hierarchical structure
that POSIX datastore does. Consumed and produced datasets are read and written directly
from S3 as bytes, whenever possible, and only downloaded to temporary files for objects that
are not serializable. Since the directory structure is preserved by the S3 datastore the entire
data repository is trivially transferable between the cloud and a local filesystem.

The Butler registry is a RDS PostgreSQL database that keeps track of all LSST science files. Files
that are not managed by Data Butler are managed by the Condor File IO via Pegasus. These

4

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

include the Data Butler configuration file, pipeline definition (Quantum) files, and the log files.
Themaster instance serves as the staging site for these files. Various network protocols trans-
fer the files between the master and the workers; instances do not share a filesystem.

3.1 Alternative architecture designs

We discussed different architecture designs but did not pursue all of them due to time con-
straints.

One prominent idea was to use HTCondor utilities to transfer files with S3, rather than relying
on Data Butler to communicate directly with S3. In this design HTCondor controls all file trans-
fers, and all datasets are declared in the execution workflow. The proposed implementation
was partially external to the LSST code base, and such a data transfer plug-in was added to
the HTCondor code base recently. In each job there is a POSIX data repository for local data
access, and a mechanism is needed to trigger and perform data ingestion at a central S3 data
repository. This requires additional Generation 3 Middleware utilities for posix-S3 datastore
copying and URL generation. These issues disfavored this architecture. A favorable benefit
of this approach is the potential of bulk data transfer management optimizations.

With respect to the database, we discussed the possibility of having local registries within indi-
vidual jobs. Each job has a fast local SQLite registry. After each job finishes, the indiviual reg-
istry is then collated into the central database. Besides simplifying failure recovery, another
benefit is to avoid potential bottlenecks related to large scale parallel SQL transactions by
bundling multiple transactions together and handling database connections in a centralized
manner. This envisions a fully shared-nothing architecture, but implementing this requires
more thorough design work in conjunction with the Generation 3 Middleware development.
Also, the current implementations of the Butler registry depend on conflict resolution syntax
to resolve insertions of complexs datasets, which may not work in this scenario.

4 Approaches and strategies

AWS PoC’s goal is to demonstrate that running Data Release Production (DRP) on AWS is pos-
sible. The following approaches were taken.

5

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

4.1 Progress in phases

DMTN-114 proposed development phases that broadly outlined how progress can be made
and when performance would bemonitored. The outlined plan was to move the execution to
AWS without any backend modifications first and then gradually switch out each component
to AWS.

Before this AWS PoC, the DRP execution relied a shared POSIX-compliant filesystem. In the
first phase such filesystem was replaced by Amazon EFS. The data repository, including a
POSIX datastore and a SQLite registry, was entirely located on EFS that was mouted to each
of the EC2 compute instances.

Later, the S3 datastore replaced the need of EFS, and the PostgreSQL RDS replaced the SQLite
registry. Also, a Personal HTCondor Pool on an single EC2 instance was used before we tested
the capability to launch new EC2 instances as the HTCondor workers and execute jobs. This
approach allowed us to debug and adapt more smoothly and always had a fallback option in
integrating and testing new features and components.

4.2 Test minimally before scaling up

Small tasks are tested before workflows of jobs, and small workflows are tested before large
workflows. The canonical ci_hsc dataset and the accompanying CI workflowprovide aminimal
HSC test dataset and a representative DRP workflow and algorithms. This test workflow is
an important step in integrating new changes. For larger scale tests we used the HSC-RC2
dataset.

4.3 Use Generation 3 Middleware

One of the mandates in the AWS PoC was to use the Generation 3 Middleware (DMTN-056),
which has been designed to ease the DRP execution and automation compared to the previ-
ous Generation 2 Middleware. Generation 3 Middleware design is more pliable to alternative
backends, compared to Generation 2 Middleware. As it was still relatively early in its imple-
mentation, findings in the AWS PoC were feedbacked to the Generation 3 Middleware team
and influenced its development.

6

https://github.com/lsst/ci_hsc
https://jira.lsstcorp.org/browse/DM-11345
https://jira.lsstcorp.org/browse/DM-11345

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

On the other hand, as during the AWSPoC theGeneration 3Middleware has beenunder active
development, backwards incompatible changes occurred often, and the APIs were unstable.
Furthermore, therewere no integration tests when the AWS PoC started and the test coverage
has been suboptimal. Hence, changes often broke functionality. Lack of a good integration
test is still a major concern going forward. New integration tests may not be accepted due to
the much longer time required to run the test suite.

Keeping this in mind, We decided not to always follow the bleeding edge version and updated
only when unnecessary, such as important bug fixes. The stack versions should not have
strong impacts in the AWS PoC conclusions in terms of the cloud feasibility.

4.4 Focus on end-to-end execution

Potential optimizations and further investigations were identified throughout the PoC project
but were not carried out. Some ideas are described in Sec 7.

5 Building AWS support into the Data Butler

The Data Butler is the overarching data IO abstraction through which all LSST data access
is mediated DMTN-056. Datasets are referred to by their unique IDs, or a set of identifying
references, which are then resolved through a Registry that matches the dataset IDs, or ref-
erences, to the location, file format and the Python object type of the dataset. The system
that persists, reads and potentially modifies the datasets is called the Datastore. The Registry
is almost always backed by a SQL database and the Datastore is usually backed by a shared
filesystem. A major focus of the AWS PoC was to implement, and investigate issues related
to, an S3 backed Datastore and a PostgreSQL backed Registry.

At the time the AWS PoC project began, Generation 3 Data Butler implemented PosixData-

store, a local or shared filesystem datastore, and a SqliteRegistry. OracleRegistry followed
soon after the AWS PoC work began. Initially the focus was on implementing an S3 backed
datastore called S3Datastore. The interface between AWS services and LSST Stack would be
based on the official AWS SDK called boto3. In March 2019, Dino Bektesevic visited Tim Jen-
ness for this work and implemented the early versions of a new module in the daf_butler

called s3utils, an S3Datastore class, the PosixDatastore equivalent, and a set of appropriate
unit tests that demonstrated its functionality and correctness. The unit tests for the data-

7

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

store utilize the moto library which mocks requests and responses sent to AWS services, so
that no additional external infrastructure is required to use it. PostgreSqlRegistry class was
implemented partially during the visit and completed shortly after the visit. The initial im-
plementation showcasing the required changes to the code was submitted as a Draft Pull
Request PR-147 in daf_butler.

The tentative implementation revealed issues with how the Data Butler treated Uniform Re-
source Identifiers, or URIs, which were, at the time, not being handled correctly, as per stan-
dards defined in FC-3986, by the Location class. In May 2019 DM-19916 resolved the issues
with the ButlerURI class. Major efforts were then invested into refining the newly added code
to the level of production quality as well as updating the remaining Generation 3 Butler to
use the updated ButlerURI code instead. Every call to OS functionality had to be generalized
to take a URI and from it determine the appropriate operation - a call to OS functionality, a
AWS operation or something else. This led changes in Butler, Config, ButlerConfig and YAML
Loader classes. These changes made the whole of Data Butler more general and pliable to
future changes, such as adding support for other cloud providers.

Further integration of the S3 backend required a change to Formatter classes to enable data
serialization and deserialization to and from bytes. Formatters present interfaces for read-
ing and writing of Python objects to and from files. They are the mechanism underlying how
Data Butler is capable of presenting data as science products in the form of Python objects,
abstracting away the underlying file types. Modifications were made to JsonFormatter, Pick-
eFormatter, YamlFormatter, PexConfigFormatter and the generic abstract class Formatter. This
concluded the last of changes required for S3Datastore integration and the code was merged
in PR-179 in daf_butler (DM-13361). It became apparent that similarities were shared be-
tween PosixDatastore and S3Datastore, and would be shared by other future datastore im-
plentations. This prompted DM-21009 to reduce code duplication in the general datastore
code.

PostgreSqlRegistry was added afterwards. The initial implementation from March 2019 was
basedon OracleRegistry. Similarities between the two implementations led to a re-implementation
of the generic SqlRegistry class in July. Problems were caused, for both Oracle and Post-
greSQL, by the table naming conventions and additionally, for PostgreSQL, the table views did
not conform to the assumptions made. In July the PostgreSqlRegistry was re-implemented
in terms of the more general SqlRegistry and a new SQLAlchemy expressions compiler was
written, so that table views could be generated correctly. The policy for additional registry

8

https://github.com/lsst/daf_butler/pull/147
https://tools.ietf.org/html/rfc3986
https://jira.lsstcorp.org/browse/DM-19916
https://github.com/lsst/daf_butler/pull/179
https://jira.lsstcorp.org/browse/DM-13361
https://jira.lsstcorp.org/browse/DM-21009

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

implementations was not to accept associated unit tests, as they are dependent on existing
outside architecture, meant that checking whether it worked or not had to be based on man-
ually executing actual data workflows. In July and Auguest Dino Bektesevic migrated existing
SQLite registries to PostgreSQL and with Hsin-Fang Chiang started testing using the ci_hsc
workflow on AWS. The code was merged into the master branch of daf_butler in August with
PR-161. A major issue was then discovered when issuing rollback statements during error
recovery stemming from assumptions made when implementing how all of the current SQL
registries handle errors during transactions. A stopgap solution, that works for all currently
implemented registries, was implemented in DM-21210 and a more complete solution was
implemented later in DM-21201.

Outstanding issues are presented in terms of security and authorization when dealing with
both S3Datastore and PostgreSqlRegisty, with PostgreSqlRegisty being especially sensitive to
these issues. Security has received the outmost attention by the LSST AWS PoC group. Signif-
icant attention was paid to preserving the flexibility of the authentication in order to be able
to incorporate external authenticators such as Oracle Wallets and AWS IAM Roles and Poli-
cies. There were several different iterations and improvements made to the authentication
implementation (DM-20992, DM-21146, DM-21222) that resulted with the current implemen-
tation. DM-20992 re-implemented the DbAuth module that was previously C++ wrapped in
the Generation 2 Butler daf_persistence to pupre Python in the Generation 3 Butler, so that
the module would support basic file based authentication in absence of external authentica-
tion methods. Additional layers of security are achieved through EC2/S3/RDS interfaces by IP
white/blacklisting , IAM, Policies etc. These policies can be very granular, affecting individually
selected objects, Bucket-wide to placing all instances on the same, externally innaccessible,
Virtual Private Network (VPN).

Adding the support for AWS into the Butler exercised a significant fraction of the Generation
3 Data Butler. During the process many faults and unpredictable behaviors were discovered
and solved. Many problems touched, and continue to exercise, the general Generation 3 Data
Butler implementation, as well as assumptions made during their implementation. Recount-
ing the wide list of major improvements to the codebase, hopefully, reveals how productive
this exercise has been in helping generalizing and strengthening the whole Generation 3 Data
Butler codebase.

9

https://github.com/lsst/daf_butler/pull/161
https://jira.lsstcorp.org/browse/DM-21210
https://jira.lsstcorp.org/browse/DM-21201
https://jira.lsstcorp.org/browse/DM-20992
https://jira.lsstcorp.org/browse/DM-21146
https://jira.lsstcorp.org/browse/DM-21222
https://jira.lsstcorp.org/browse/DM-20992

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

5.1 PostgreSQL performance

The following described performance issue applies strictly to w_2019_38 builds and earlier.
The QuantumGraph is created by issuing a very large SQL statement that, effectively, creates
a cartesian product betweenmany, of the 15-ish or so, tables in the registry. The results of the
large query are then parsed in Python and a slew of many different, small, follow-up queries
are issued. This diverse workflow presents a difficult challenge in DB optimization. The Gen-
eration 3 Middleware team reports that on average it takes 0.5 to 1.5h to create Quantum-
Graphs for tract-size DRP workflows with Oracle on NCSA infrastructure. In our tests we were
unable to create even the simplest QuantumGraphs, even after doubling of the RDS instance
resources, andwere forced to abortmultiple times after 30+h of execution. The lack of perfor-
mance did not seem related to hardware limitations, since none of the performance metrics
availible showed heavy hardware loads nor didthe problem go away even after significant
increase of RDS resources.

PostgreSQL, and Oracle, regularly collect statistics on database objects used in queries. These
statistics are then used to generate execution plans. These execution plans are then often-
times cached. This in general results in performance gains. But because Butler generates all
SQL dynamically there are no guarantees that a cached, or even pre-prepared execution plan
can be executed. In PostgreSQL many of these optimizations then fail.

Specifically what seems to happenwith PostgreSQL is that all the viewsmaterialize completely
on disk. Even when the views are part of larger statements, in which the outter statements
have strict constraints on them, the outter constraints do not seem to penetrate to the view
statement. It is unclear, from within AWS PoC, whether Oracle DBMS does not suffer from
this issue because it has a better SQL statement optimization engine or if this is something
more directly tied to how PostgreSQL implements views.

The performance penalty of the behaviour is debilitating. Bellow is an abreviated query plan
for the simplest case of select * from visit_detector_patch_join limit 4; that suffers from
the described issue.

1 Limit (actual time =12732.766..12732.774 rows=4 loops =1)
2 ->Unique (actual time =12732.765..12732.770 rows=4 loops =1)
3 ->Sort (actual time =12732.764..12732.767 rows=6 loops =1)
4 Sort Key:
5 Sort Method: external merge Disk: 209008 kB
6 ->Hash Join (actual time =763.846..1524.504 rows =4642107 loops =1)
7 Hash Cond:
8 ->Seq Scan on (actual time =0.008..16.289 rows =206960 loops =1)
9 ->Hash (actual time =763.723..763.724 rows =3259107 loops =1)

10

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

10 Buckets: 65536 Batches: 64 Memory Usage: 3635kB
11 -> Seq Scan on patch_skypix_join (actual time =0.006..240.128 rows =3259107 loops =1)
12 Planning time: 0.323 ms
13 Execution time: 12759.391 ms

Note that the totalmaterialized size of the view on disk is 200MB and that it took 12 seconds to
retrieve only 4 results! There is no clear solution to this problem from within the Middleware
codebase.

The sollution is however possible by manually redefining the views as materialized views in-
stead, adding triggers that recreate the views on any insert statement to the underlying tables
that make the view, and then adding indexing onto the materialized views. This reduces the
time it takes to create a QuantumGraph to the point where it’s comparable to that reported
by the DM team. The query plan for the same SQL select statement as described above now
looks like:

1 Limit (actual time =0.009..0.010 rows=4 loops =1)
2 ->Seq Scan on visit_detector_patch_join (actual time =0.008..0.008 rows=4 loops =1)
3 Planning time: 0.053 ms
4 Execution time: 0.021 ms

RecentlyDM-17023 reworked and completely re-implemented the SQL schemaanddatamodel
for the registries. We have not yet tested the performance of the new registry schema in Post-
greSQL. The issues described here well optimize the set of specific queries, at the cost of a
performance hit for all inserts into visits, patches..., but an important take away lesson here
should be that because all of the SQL is generated completely dynamically guaranteeing ex-
ecution plan stability and performance is dificult. Not all DBMSs optimize SQL statements
euqally well. Tying the CI and testing to only one database doesn’t suficiently test the code
performance and because the SQL is generated completely dynamically to fix potential poor
performance requires schema modifications to be made external to the Middleware code.
Because some of the performance loss can be debilitating, it is possible that certain DBMSs
are, in this implementation, tied into implementing unoptimal solutions just to be able to run
DRP.

6 Results of the tract-sized runs

After successful execution with the ci_hsc dataset, we scaled up the run to one full tract of the
HSC-RC2 dataset, as defined in DM-11345. The full HSC-RC2 input repository contains 108108
objects and totals ∼1.5TB, including 432 raw visits in 3 tracts and ∼0.7TB of calibration data.

11

https://jira.lsstcorp.org/browse/DM-17023
https://jira.lsstcorp.org/browse/DM-11345

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

Task Count
Initialization 1

IsrTasks 6787
CharacterizeImageTasks 6787

CalibrateTasks 6787
MakeWarpTasks 4580

CompareWarpAssembleCoaddTasks 395
DetectCoaddSourcesTasks 395

MergeDetectionsTasks 79
DeblendCoaddSourcesSingleTasks 395

MeasureMergedCoaddSourcesTasks 395
MergeMeasurementsTasks 79

ForcedPhotCoaddTasks 395
Total 27075

Table 1: Task breakdown of the HSC-RC2 tract=9615 workflow

In this project, we targeted tract=9615 which was executed with the Oracle backend on the
NCSA cluster in July 2019 as the S2019 milestone of the Generation 3 Middleware team; see
DM-19915. In terms of raw inputs, tract=9615 contribute around 26%, or ∼0.2 TB, of the raw
data in the HSC-RC2 dataset. We ignored patch 28 and 72 due to a coaddition pipeline issue
as reported in DM-20695. A Butler repo was first made on NCSA’s GPFS with a sqlite registry,
and then transferred to the S3 bucket and the RDS instance. All tract-sized runs reported in
this DMTN used LSST Software Stack release w_2019_38. The version of HTCondor was 8.9.3.

The workflow contains 1 initialization job and 27074 regular PipelineTask jobs. Science config-
urations from https://github.com/lsst-dm/gen3-hsc-rc2 were used to generate a Quantum
Graph. We transformed theQuanta into jobs in the Pegasus format with one-to-onemapping.
The breakdown of the tasks in the workflow is in Table 1.

Generally speaking, there are two types of jobs: small-memory and large-memory jobs. Small
memory jobs take less than 4GB per jobs, and large memory jobs can take up to ∼30GB
per job. For simplicity, we consider all jobs of MakeWarpTask, CompareWarpAssembleCoad-
dTask, DeblendCoaddSourcesSingleTask, and MeasureMergedCoaddSourcesTask as large-
memory jobs and require∼30GBofmemory in their job requirements. HTCondor onlymatches
jobs to machines with sufficient memory. AWS instances come with different flavors and the
r family provides memory optimized instances with ∼8GB per core. The worker instances are
configured to be HTCondor partitionable slots which dynamically splits resources and creates
new slots to suit the jobs.

12

https://jira.lsstcorp.org/browse/DM-19915
https://jira.lsstcorp.org/browse/DM-20695
https://github.com/lsst-dm/gen3-hsc-rc2

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

Run ID Workflow Cumulative job Pipetask Pipetask Pipetask Pipetask
wall time wall time Min (sec) Max (sec) Mean (sec) Total (sec)

20191026T041828 28.4 hrs 61 days, 10 hrs 17.025 5936.038 195.465 5292217.997
20191121T015100 11.7 hrs 65 days, 8 hrs 18.272 5852.514 207.691 5623244.556
20191127T192022 8.7 hrs 62 days, 16 hrs 17.861 6243.819 199.636 5405141.464
20191127T192345 10.0 hrs 62 days, 23 hrs 19.297 6300.657 200.601 5431273.315

Table 2: Run summary

The submit host is an AWS on-demand instance, typically m5.large or larger. Spot fleets are
requested after the Pegasus workflow start. Typically m4 or m5 instances are used for the single
frame processing or other small-memory jobs, and r4 instances are used for large-memory
jobs. After the workflow finishes, remaining running Spot instances may be terminated on
the AWS console. Besides the 27075 pipetask invocations, Pegasus added 2712 data transfer
jobs and one directory creation job. The total output size from the tract=9615 workflow is
∼4.1 TB with 74360 objects.

6.1 Notes from the successful runs

Details of all runs are summarized in DM-21817, and in the following we summarize the suc-
cessful runs only. Table 2 lists the runtime as reported by Pegasus tools.

In the first successful run 20191026T041828+0000, a fleet of 40 m5.xlarge instances were used
for single frameprocessing and then a fleet 50 r4.2xlargememory optimized instances for the
rest. A m5.large on-demand instance served as the master. The single frame processing part
finished in 4 hours; coadd and beyond took 16 hours. In this run, the memory requirement
of the large-memory jobs was slightly higher than half of a r4.2xlarge, resulting in instance
resources not fully used. This run spanned two billing days.

In the repeated run 20191121T015100+0000, the master was also a m5.large on-demand In-
stance. Fleets containing 75 m4.xlarge instances and 50 r4.2xlargewere launched. Themem-
ory requirement of the large-memory jobs was adjusted so that two such jobs can run on a
r4.2xlarge simultaneously. Due to the larger fleet, the whole workflow finished within 12
hours in one bill day.

We then ran twoof the sameworkflowgraphs 20191127T192022+0000 and 20191127T192345+0000

simultaneously, simulating a larger input size. The master was a m5.2xlarge on-demand in-

13

https://jira.lsstcorp.org/browse/DM-21817

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

stance. A Spot fleet containing 150 m5.xlarge instances ran the single frame processing for
the first three hours, and a fleet of 150 r4.2xlarge instances ran the rest of the workflow.
600 jobs ran simultaneously during single frame processing. Larger fleets were used to help
finishing the workflows in a shorter wallclock time. This run spanned two billing days.

6.2 Cost analysis

The main components of the charges come from (a) EC2 Spot instances, (b) EC2 on-demand
instances, (c) S3 storage, (d) RDS, and (e) others. We extract and analyze information using
the AWS Cost Explorer tools.

1. EC2 Spot instances. EC2 Spot instances are the workers that execute the processing
jobs, so this essentially is the cost of the compute power and scales with the compute
resources needed to accomplish the processing campaign. The exact pricing for Spot
instances varies based on supply and demand of the overall EC2 capacity. For instances
used in our test runs, Spot instances cost around 20-25% of the on-demand instance
price. Charges continue as long as the instances are up and running, even if no jobs are
assigned to the instances. One hour of Spot instance typically costs $0.045 for m5.xlarge
and $0.08 for r4.2xlarge. Different mix of instance types could affect the performance
as well as the total cost. Considering the idle time as necessary overheads, we paid
∼$0.035 per active CPU hour in average. We could pay less with better workload control
and instance lifecycle control.

2. On-demand EC2 instance. We use an on-demand EC2 instance to serve as the submit
host and the central workflow manager because we do not want it terminated by AWS.
The current price of m5.xlarge on-demand instances is $0.192 per hour.

3. RDS. Throughout our test runs we used a db.m5.xlarge instance, which has 4 vCPU
and 16 GB of memory, to host the Butler Registry of the HSC-RC2 repository. We are
aware this DB instance is more powerful than we usually need but we keep it running.
The charge is therefore proportional to the span of time. For simplicity we count all
RDS charge during the runs towards the cost of the runs, which is an overestimate be-
cause we also host other small database instances for testing purposes. For example,
a db.t2.micro has been running alongside to host a Butler Registry for the ci_hsc repo
which costs $1.3 per day.

4. S3. The charge of S3 is dominated by the data storage cost, which is $0.023 per GB

14

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

per month for the first 50TB. This means it costs ∼$1.2 per day storing the input repo
(∼1.5TB) alone, and ∼$3.1 per day storing one set of the tract=9615 workflow outputs
(∼4.1TB). Note that outbound data transfer is not free at AWS. At the rate of $0.09 per
GB, transferring one tract=9615 output dataset out of AWS would cost ∼$370. We also
incur charges per quantity of requests, which cost ∼$4.3 for each run of the tract=9615
workflow.

5. Other charges. The majority of other charges come from the Elastic Block Store (EBS)
that provides storage for use with EC2. This includes SSD-backed volumes and snap-
shots, both of which are priced per size and time. Other charges are relatively small,
such as a Business Support plan to get help from AWS engineers, and CloudWatch for
additional monitoring information. In our accounting here this also includes charges
from instances used in work indepedent of the workflow execution, so this should be
seen as an upper bound.

Table 3 and Figure 2 provide an overview of the cost breakdown for each run. This includes
all charges incurred on the billing days during which the runs were done, so this can be seen
as an upper bound. The price dropped significantly from the first run to the rest, mostly due
to operator knowledge and optimization for this workflow execution. We have not optimized
the overall usage; more discussions are in Sect 7.

Runs

Category 20191026T041828 20191121T015100 20191127T192022
20191127T192345

EC2 on-demand instances for master 2.88 1.54 2.05
EC2 Spot instances 94.69 58.55 52.94

RDS 26.38 13.82 13.82
S3 (including other storage cost) 17.29 13.48 21.48

Others/mostly EC2 18.38 7.12 6.37
Total 159.62 94.51 96.66

Table 3: Cost breakdown for each run

6.3 Cost projection

The raw input exposures in the HSC-RC2 tract=9615workflow contains∼0.2TB from 112 visits.
Compared to one night of LSST data in full operations, this is only∼11% in the number of visits.
In one of our tests, we doubled the input size to explore how it scales up. It scales roughly
linearly in cost and total compute resources. In processing wallclock time, it does not take

15

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

Figure 2: Cost breakdown for each run

longer because more EC2 instances can be deployed. For one tract of DRP test workflow the
cost was around $95. If such scaling relationship holds for larger amount of data, 1000 input
HSC visits will cost around $850 to process.

7 Potential Improvements and more lessons learned

In this session we describe issues we have encountered during the execution and ideas on
how to improve the code or the instance and workflow management. We discuss both inter-
mittent failures that we understand and expect to occasionally encounter even in production,
as well as higher level design or tooling improvements.

Failures can occur due to non-pipeline issues such as underlying infrastructure. The fault rate
may be small but as we scale upwe start to encounter some. Some examples are listed below;
most seem transient.

1. Database connection timeout. Attempting to connect to the RDS instance failed.
sqlalchemy.exc.OperationalError: (psycopg2.OperationalError) could not connect to server: Connection timed out

2. After a file was added to a S3 bucket and during ingestion in the Butler registry, S3 re-

16

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

ported a file does not exist. This will be fixed in DM-22201.
FileNotFoundError: File at 's3://hsc -rc2 -test1 -hfc/repo -w38/hfc30/srcMatchFull /1316/ srcMatchFull_1316_24_HSC_17.fits ' does

↪ not exist; note that paths to ingest are assumed to be relative to self.root unless they are absolute.

3. S3 read timeout before science processing started in a job.
botocore.exceptions.ReadTimeoutError: Read timeout on endpoint URL: "None"

4. Worker out-of-memory while running jobs. For the same pipeline and input data, this
is reproducible. But we may not always have accurate memory usage prediction for
any input data before running the jobs. We can configure HTCondor to increase the
memory requirement in the retry. However sometimes OOM crashed the instances and
appeared as a network issue which is not desirable behaviour.

5. Launching HTCondor Annex workers failed with connectivity check collector issues.
Connectivity check found wrong collector (f5fc15573ffb9c93 vs a006066e73c412da).

6. Dataset ConflictingDefinitionError. In rare occassions we observed dataset conflict er-
rors from the registry without obvious reasons such as duplicate collection names or
retries. DM-21201 has refactored the code to robustify such transactions. It could also
be related to Spot instances getting terminated; see next section on failure recovery.

7. Database out of shared memory.
psycopg2.OperationalError: out of shared memory

It was usggested that increasing max_locks_per_transactionmay help.

More generally, improvements in system design and tooling rise to prominence. We discuss
some ideas below.

1. Better job failure recovery strategies. Our jobs write directly to the S3 bucket and the
RDS instance via theData Butler. If a job fails in a state that partial outputs arewritten but
the job does not fully finish, recovery is not trivial. Such failed partial writes are handled
on the registry side the DBMS but on the datastore side they are handled by wrapping
failable transactions in a transaction context manager. The context manager takes a
callable that then proceedes with the cleanup. For S3 datastore, at the time of writing,
the utility functions preforming the cleanup have not yet been writte (in progress). The
larger issue with job failures is the lack of DRP workflow failure handling. There is no
way yet to reliably pause the DAG execution, overwrite files from a failed job, or other
ways to handle such scenarios.

17

https://jira.lsstcorp.org/browse/DM-22201
https://jira.lsstcorp.org/browse/DM-21201

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

2. Container based software stack. We have found it tricky to handle the LSST stack
installation, dependencies, and environments to be used together with other software.
One possible way to avoid the headaches is to use docker based stack releases. This
may also ensure consistency of software on the master and the workers more easily, as
well as improve shareability.

3. Better clustermanagement tooling. Our current operational approach requiresman-
ually deploy suitable types and sizes of fleets based on our understanding of the overall
workload. Strategies on the instance choices and timing of requests therefore affect
the cost, and manual adjustments are usually needed to reduce cost. Annex can re-
move idle instances out of the condor pool but may not terminate the instances until
the lease expires. Also once instances drop out of the pool they can’t be added back
easily. Tooling become essential for the operations. For example we may use scripts to
auto-scale the Annex condor pool based on the current demand for resources, or based
on predictng resource demands from the Quantum Graph. The execution overheads
from idle instances may be mitigated by utilizing some of other AWS services, such as
SimpleWorkflow service (SWF) or AWS Batch service. This may bind the solutions strictly
to AWS, a disadvantage of such adoption.

4. End-to-end CI. This should include all operational components to do an end-to-end run.
This includes Butler repo generation, registry generation, Quantum Graph generation,
job composition, workflow translation, job execution, and so on. Many of the compo-
nents were in the development phase and workarounds were used during the PoC. For
example a nativeGeneration 3 ingestionwas not available so aGen2-to-Gen3 conversion
was needed, and in fact many of the registries were migrated to RDS partially manually
by executing bespoke scripts made specifically for such purpose that are not generally
portable cross backwards-incompatible changes to the Middleware code. As we put to-
gether the pieces, the absence of to do so in an automatic fashion became a key burden.
In retrospect we probably should have invested more time to automate the end-to-end
workflow, even with workarounds, but the efforts were plagued by the lack of a canoni-
cal ingest tool. Additionally, the DM team has concerns in the long execution time from
overly-inclusive CI tests. Adding S3 datastore CI tests to the default CI suite would double
the total CI execution time.

5. Credential handling. Security concerns received special attention in the AWS PoC. Na-
tively none of the Middleware code requires the credentials to exist on the instance in
plain text, even though they support that option. Authentication can be performed via
Identity and Access Management Roles to both S3 and RDS services. IAM Role authen-

18

https://aws.amazon.com/swf/
https://aws.amazon.com/batch/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

tication is more secure than other authentication methods, but require understanding
of how AWS security and permissions work and sometimes require tedious setup. For
example for RDS IAM access an account admin needs to create the IAM Role then DB
admin needs to log in to the DB interactively and create a role with rds_iam permis-
sions and then also grant usage priviledges on the DB schema, tables etc. While we
have tried an IAM setup in the AWS PoC we often stored credentials onto the master
and worker instances in ~/.lsst/db-auth.yaml, ~/.aws/credentials or in environmental
variables which is not the best practice of handling the access. Utilities and tooling that
help speed up such setup would be highly desireable.

6. Robustify and give better error messages. It has been observed that sometimes the
error messages could be misleading.

7. Other AWS services. Services such as AWS Batch and AWS Glue could potentially of-
fer powerful tools to our use cases. AWS Batch provides EC2 lifecycle management and
workflow control, which may reduce the cost of our EC2 usage. AWS Glue provides ex-
tract, transform, and load (ETL) services with respect to our S3 storage usage, whichmay
improve our data warehousing experience and form Data Lake.

8 Summary

In this AWS PoC project we have demonstrated the feasibility of LSST DRP data processing on
the cloud. We implemented AWS backends in the LSST Generation 3 Middleware, allowing
processing entirely on the AWS platform using AWS S3 object store, PostgreSQL database,
and HTCondor software. We analyzed cost usage in our test execution, and estimated cost for
larger processing campaigns. We showcased our progress in a live demonstration in the LSST
Project Community Workshop in Aug 2019, as well as a hands-on tutorial in the Petabytes to
Science Workshop in Nov 2019. Ideas of improvements necessary for larger-scale production
are identified and discussed.

A References

References

[LDM-463], Becla, J., Pease, N., 2017, Data Access Design, LDM-463, URL https://ls.st/LDM-463

19

https://aws.amazon.com/batch/
https://aws.amazon.com/glue/
https://confluence.lsstcorp.org/display/DM/Tutorials+at+the+Kavli+workshop
https://confluence.lsstcorp.org/display/DM/Tutorials+at+the+Kavli+workshop
https://ls.st/LDM-463

LARGE SYNOPTIC SURVEY TELESCOPE
AWS Proof of Concept Project Report DMTN-137 Latest Revision 2019-12-12

Bosch, J., Armstrong, R., Bickerton, S., et al., 2018, PASJ, 70, S5 (arXiv:1705.06766),
doi:10.1093/pasj/psx080, ADS Link

Deelman, E., Vahi, K., Juve, G., et al., 2015, Future Generation Computer Systems, 46, 17, URL
http://pegasus.isi.edu/publications/2014/2014-fgcs-deelman.pdf,
Funding Acknowledgements: NSF ACI SDCI 0722019, NSF ACI SI2-SSI 1148515 and NSF OCI-
1053575, doi:10.1016/j.future.2014.10.008

Jenness, T., Bosch, J.F., Schellart, P., et al., 2018, arXiv e-prints, arXiv:1812.08085
(arXiv:1812.08085), ADS Link

[DMTN-114], Lim, K.T., Guy, L., Chiang, H.F., 2019, LSST + AmazonWeb Services Proof of Concept,
DMTN-114, URL http://dmtn-114.lsst.io

[DMTN-056], Pim Schellart, J.B., 2018, Butler Redesign Strawman, DMTN-056, URL http://

DMTN-056.lsst.io

Thain, D., Tannenbaum, T., Livny, M., 2005, Concurrency - Practice and Experience, 17, 323

B Acronyms

20

http://arxiv.org/abs/1705.06766
http://doi.org/10.1093/pasj/psx080
http://adsabs.harvard.edu/abs/2018PASJ...70S...5B
http://pegasus.isi.edu/publications/2014/2014-fgcs-deelman.pdf
http://doi.org/10.1016/j.future.2014.10.008
http://arxiv.org/abs/1812.08085
https://ui.adsabs.harvard.edu/abs/2018arXiv181208085J
http://dmtn-114.lsst.io
http://DMTN-056.lsst.io
http://DMTN-056.lsst.io

	Background
	Technology stack
	Amazon Elastic Compute Cloud (EC2)
	Amazon Simple Storage Service (S3)
	PostgreSQL
	HTCondor
	Pegasus
	LSST Software Stack

	Architecture design
	Alternative architecture designs

	Approaches and strategies
	Progress in phases
	Test minimally before scaling up
	Use Generation 3 Middleware
	Focus on end-to-end execution

	Building AWS support into the Data Butler
	PostgreSQL performance

	Results of the tract-sized runs
	Notes from the successful runs
	Cost analysis
	Cost projection

	Potential Improvements and more lessons learned
	Summary
	References
	Acronyms

